
315 

Image solution for vertical motion of a point source 
towards a free surface 

By JOHN P.  MORAN 
Therm Advanced Research, Ithaca, New York 

(Received 22 April 1963 and in revised form 4 September 1963) 

The vertical constant-speed motion of a constant-strength point source towards 
a horizontal free boundary is analysed. A procedure based on expansions in 
even powers of the Froude number is employed. The asymptotic expansion of 
the potential is found to satisfy a simple differential equation, which, when 
integrated, yields an image-type solution valid for all Froude numbers. Froude- 
number effects are contained in a distribution of sources along the vertical line 
from the image of the submerged source with respect to the undisturbed free 
surface upward to infinity. The solution is valid for arbitrary values of the 
density ratio across the free surface. 

1. Introduction 
In  the theoretical analysis of the hydrodynamics of bodies moving near a 

free water surface, it  is convenient to work in terms of fundamental solutions 
of the governing Laplace equation and of the linearized free-surface boundary 
conditions. Solutions corresponding to the motion of a point source beneath 
the surface are of particular interest. By superposing these solutions such that 
the body surface is covered with sources, the problem is reduced to the determina- 
tion of the strength of the body-bound source distribution so as to satisfy the 
body boundary condition. 

The fundamental solution corresponding to the motion along an arbitrary 
path of a point source of time-dependent strength has been derived by Haskind 
(1946) and Brard (1948) and is discussed in Wehausen & Laitone’s (1960) review 
article. The solution is derived by transform methods, and consists of three 
terms: the potential of the submerged source, of a singularity of equal but 
opposite strength at  the image of the submerged source with respect to the undis- 
turbed free surface, and of a superposition of standing waves of all wavelengths. 
The first two terms constitute the infinite-Froude-number approximation to 
the solution, while the effects of gravity on the fluid motion are contained in the 
third term. 

The form of this last term, even in the special case of constant source strength 
and rectilinear source motion, is somewhat unwieldy. It would be preferable, 
a t  least from the interpretational (and possibly from the computational) point 
of view, if Proude-number effects were expressed as a superposition of sources 
or other singular solutions of the Laplace equation. Such an ‘image’ solution 
was found by Havelock (1927) for the two-dimensional problem in which a 
doublet of constant strength moves parallel to the water surface at constant 
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speed. His image system consists of a horizontal distribution of doublets trailing 
rearward from the image point to infinity. The doublets are of constant strength, 
but their axes rotate harmonically along the length of the distribution. 

In  the present paper, an image solution is derived for the vertical constant- 
speed motion of a constant-strength point source towards the surface. The 
approach employed is somewhat unusual. The asymptotic expansion of the 
potential in even powers of the Froude number is derived, and is found to satisfy 
a simple first-order differential equation. The solution of this equation yields 
a final result, valid for all Froude numbers, in which Froude-number effects are 
contained in a vertical trail of sources from the image point upwards to infinity. 
The strength of the distribution decays exponentially with increasing distance 
from the image point. Both the maximum value and the rate of decay of the 
distribution strength are inversely proportional to the Froude number. 

In  the formulation of $ 2  and the solution of $3, the region above the surface 
is supposed to have zero density, as is approximately true in the case of an air- 
water interface. For completeness, the solution is extended in $4  to the case 
where the fluid above the surface has an arbitrary density. 

2. Formulation 
The flow under consideration is assumed to be incompressible and irrotational. 

The problem may thus be formulated in terms of a velocity potential q5, defined 
so that its gradient yields the velocity field. From continuity, q5 must satisfy 
the Laplace equation 
everywhere in the flow field of interest, except at specified singular points. In 
particular, we seek a potential of the form 

v2q5 = 0 (1) 

m 
r I' 

q 5 = - + q 5  

where r2 = z2+(y-b)2+x2. (3) 
The first term in ( 2 )  is the potential of a point source of strength -44nrn." 

The source is located at (0, b, 0) in rectangular Cartesian coordinates (z, y, z),  
which are space-fixed, with the y-axis directed vertically upward. The plane 
y = 0 is the undisturbed position of a boundary which is free to distort itself 
under the influence of the source. The source is in vertical constant-speed motion 
beneath and towards the boundary, so that 

b ( t )  = b, + Ut 

< 0. (4) 
Here U is the speed of the source and t is the time variable. 

The second term in (2) is required to be harmonic in y < 7, where y = ~ ( x ,  x ,  t )  is 
the locationof the free boundary. We assume the flow to be only slightlydisturbed 
at  this boundary. The dynamic condition of constant pressure on the free sur- 
face is then linearized and applied on the undisturbed position of the free surface, 
and takes the form q5t(x, 0 , z ,  t )  + g7(x, z, t )  = 0, (5) 

* The source strength, or volume rate of flow across any surface enclosing the source, 
is defined in this manner so as to make our terminology agree with that of Wehausen & 
Laitone (1960). 



Vertical motion of a point source 317 

where the subscripts indicate partial differentiation and g is the acceleration 
due to gravity. Combining (5) with the kinematic relation between the surface 
motion and the fluid velocity at  the surface, we obtain the linearized free- 
surface boundary condition on the potential, 

$itt+g$, = 0 on y = 0. (6) 

$,,$, ,$s+-.o as r-fcf2. ( 7 )  

~ $ , $ ~ - + 0  on y = O  as b + - m .  (8) 

The potential must also satisfy the requirement that the flow disturbances 
vanish far from the source 

Finally, we have the initial conditions, 

It may be noted that equations (l), ( 2 ) ,  and (6)-( 8) determine a unique solution 
(Finkelstein 1957). 

3. Image solution 
It is convenient to rewrite the free-surface boundary condition (6) in the form 

(9) 

F = U2/g .  ( 10) 

1 
bb F 

$ + - C $ ~ = O  on y = O .  

Here we have used (4) to replace t with b as the time variable, and have defined 

Taking our characteristic length to be unity, we may refer to F as the square of 
the Froude number. 

We seek an expansion of the potential in even powers of the Froude number 
F3, and so assume a solution of the form 

We then substitute for $ in the governing equations ( l ) ,  (7),  (8) and (9) from 
equations (2) and (1 1) and equate terms of like order in F.  Since mlr satisfies 
the Laplace equation (1) (except at  the source point) and the boundary conditions 
( 7 )  and (8) identically, so must $o,  as well as all the other $ n 7 ~ .  

On equating terms of order Fo in the free-surface boundary condition (9),  we 
obtain -[$,+:I a = o on y = O. 

a Y  
Thus, in the zeroth approximation, the problem is that of a point source near a 
plane wall. This has the well-known image solution 

m 
$0 = .,' 

y2 (14) where = - x2+(y+b)2+z2. 

Now collecting terms of order F1 in equation (9), we may write the free-surface 
boundary condition on $1 as 

(15) 

or $IY = - 2 $  OYY on y = 0, (16) 
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where the identity of equations (15) and (16) follows easily from equations (3),  
(13) and (14). Since $o and are without singularities in y < 0, the function 
$1, + 2$0gv satisfies Laplace's equation everywhere in y < 0, vanishes on y = 0 
and at  infinity, and hence, from Green's theorem, vanishes everywhere in y < 0. 
Thus equation (16) may be continued into the region below the plane y = 0, 
and integrated to yield 

where the equality of $ov and $ob is clear from equations (13) and (14). 

(17) $ - -2$ = -2$bO6, 
1 -  0, 

Using similar arguments, we find by induction that 

an 
$n = (-1)ff12-$0 for n > 0. ab" 

This expansion in even powers of the Froude number is only asymptotic 
(consider, for example, its value a t  x = z = 0). Tn general, asymptotic expan- 
sions may not be differentiated (Erdelyi 1956). However, by differentiating (9) 
with respect to b, regarding $16 as the unknown, and repeating the above 
procedure, we find that the asymptotic expansion in F of cjIb is simply the b- 
derivative of (19), which we write as 

Thus, from equations (19) and (20), we see that satisfies 

(21) 
1 1 

$Ib+ $1 = - $Ob+ 3 $0' 

The complementary solution of (21), of the form e-b/F x any time-indepen- 
dent solution of Laplace's equation, is eliminated by application of equation (8). 
The particular solution is easily found, and, when substituted into (Z), yields the 

which has the form advertised in 5 1.  
The solution for our special case is recovered from the general result reported 

by Wehausen & Laitone (1960) simply by integrating their equation (13.49) 
over time, with the result that 

m m m "  O0 dk 
$ = ---+-I r r1 7r --n dO/ ----exp{k[y+b]+ik[zcos8+zsin8]). 1+kF (23) 

The equivalence of this result with our equation (22) is readily established by 
substituting the identity 

into (23) and integrating over k and 8. 
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Thus we see that the known* solution (23) for vertical constant-speed motion 
of a constant-strength source could have been expressed in terms of images by 
introducing the trivial, though not obvious, substitution (24). Such a procedure 
was employed by Havelock (1927) in deriving the image solution for horizontal 
motion of a two-dimensional doublet beneath the surface. Nevertheless, the 
present procedure has the virtue of being more direct, and is felt to be of interest 
in itself. 

Unfortunately, our procedure is not very powerful It has been possible to 
reproduce Havelock's (1927) solution, though not without difficulty. However, 
no success was obtained in attempts to express the solution for horizontal motion 
of a point singularity in terms of images, or to treat cases in which the source 
strength is variable. 

4. Superposed-fluid problem 
We now extend the solution of 4 3 to the case in which the fluid above the free 

boundary y = 7 has a finite density. The flow field of interest is then not restricted 
to the region y < 7, but consists of all space. 

We define p+ and p- as the fluid densities in the regions above and below the 
free surface, respectively. We anticipate discontinuities in the potential and in 
some of its derivatives across the free surface, and so define 

$1 = $; for Y > 7, 

= $I for y < 7. (25) 

Both q5; and $I are functions defined everywhere, but which coincide with the 
potential $I only as required by equation (25) .  Where they do coincide with 

We neglect surface tension, so that the dynamic free-surface boundary con- 
dition is that the pressure be continuous across the surface. Inits  linearized form, 
this condition is [cf. equation (5)] 

$$ and $7 are without singularities. 

p + # l ( X ,  0'2 2, t )  -p-$l(x, 0-7 2 ,  t )  (p+-p-) gy(x, 2, t )  = 0. (26) 

We also require that the velocity normal to the surface be continuous across it. 
Since mlr and all its derivatives are continuous across the surface, this condition 
may be written 

(27) 

Combining equations (26)  and ( 2 7 )  with the kinematic relation between yt and 
q5Ju=0, we obtain a second free-surface boundary condition on the potential, 
which we write [cf. equation (9)] 

on y = 0. (28) 

* While the trivial specialization of the known solution for arbitrary motion of a variable- 
strength source to our case has not, to the author's knowledge, been published previously, 
Sakai, Husimi & Hatoyama (1933) derived a solution similar in form to (23) for the case 
of vertical motion in two dimensions of a line doublet. 
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The potential defined by equations ( 2 ) )  (3), and (25)  is also required to satisfy (l) ,  

Equation (27) shows that $I  may be represented by a vortex sheet on the 
( 7 ) )  and (8 ) .  

undisturbed free surface. Then 

$?@, o , z ,  b )  = - &(z, 0, z ,  b) .  (29) 
Differentiating (29) twice with respect to b, we may eliminate 4; from (28), which 
may then be written 

1 
$ ~ h b + F Q ~ q = - w ~  P- + P+ 

P- - P+ 

The solution for Q? now proceeds as in § 3. We determine the asymptotic ex- 
pansions in F of $7 and QG and show thereby that 41 satisfies a simple first-order 
differential equation [cf. equation ( 2  1)], which, when integrated, yields the final 

where (33) 

From equation (29), the potential $: + $y vanishes on the plane y = 0. As is 
well known, a system of singularities satisfies such a condition if, for each source 
above the plane, a singularity of equal but opposite strength is positioned at  
its image with respect to the plane. Thus, taking note of equation (31)) we may 
write down the solution for $1 without further calculation as 

This solution is readily extended to the case in which the source is moving 
in the low-density fluid downward towards the free boundary. 
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